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e Overview of (distributed) complex networks
e Recurring problems in distributed complex communications networks
e Markov Random Fields (MRFs)

e Objectives and approach
e Applying MRFs in distributed complex networks
e Network formation
e Malware propagation
e Power control

e Resource allocation & cross-layer design
e Directions for future work

e Discussion
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Complex Communications Networks

e Set of interacting entities
e Collaborating — coalitions, or Competing

e Emerging trade-off:
gain VS. COST of collaboration or interaction

e Complex Networks (CNs)
e Wide range of systems of interacting entities (actors, nodes, etc.)
e Each node performs some complex computation (simple or sophisticated)
e Diverse topologies, but same features of interest
e Model similar problems in different settings
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Network Science and Communications Networks

e Emerging {common + generic} problems in CNs
e A complex network theory required
e Mathematical models for diverse networks and their emerging problems

Study of similar {statistical, social, structural} properties & behaviors

e Working examples:
— Spreading of a disease in a social network
— Malware diffusion over a telecommunication network
— Information dissemination in an affiliation network
— Failure propagation in a large power network
— Financial crisis spreading in global markets

They all describe the same fundamental problem = Network Science
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Types of Complex Networks of Interest
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Summary of Social Metrics of Interest

Network Degree Average Path Centrality
type distribution Length
Regular dirac function
constant constant
S-W heavy-tailed .
small varying
S-F power-law .
small varying
RG Poisson :
average uniform
RGG uniform :
large uniform
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Fundamental Recurring Problems in Communications

e Emerging & recurring problems emerge in all Network Science disciplines
e Focus on those emerging in communications networks:

e Network formation & network growth

e Distributed computation

e Reliability & robustness

e Resource allocation & cross-layer design
e Scaling — stability

e Network management

e Implementation complexity and cost of operation

e Addressed via diverse analytical/simulation methodologies
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Traditionally Employed Methodologies

e Optimization

e Convex programming
e |nteger programming
e Quadratic optimization
e Nonlinear optimization
e Multi-objective optimization
e Calculus of variations — optimal control problems
e Probabilistic and combinatorial techniques
e Game theory
e Stochastic Geometry
e Graph theory

e And many others and their variations......
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Statistical

Mechanics and Communications Networks

e Various mathematical techniques adopted

e Thermodynamic parameters mapped to heterogeneous packet transmissions

e Diffusion processes

e Polymer physics

e Percolation

e Brown motion —
e Markov Random

e Spin glasses

random walks

Fields (MRFs)

e Magnetic fields and spins

e MRFs have been used extensively in image processing

e (since late 1970)
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MRFs — Objectives and Approach

e Avoid global optimization via local decision-making
e Exchange info with local neighbors

e Progressively propagate info of local neighbors to the whole network

e Successive convergence to optimizers while avoiding local traps

e E.g. stochastic optimization — simulated annealing
e As close as possible to global optimizers — achieve them if possible
e Sequential and parallel implementation

e Convergence (?) to global optimizers is the main issue
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Random Fields and MRFs

e Random Field (RF): A collection (set) of random variables {X}
e Each r.v. describes the state of an entity (site, node, etc.) X=x;

e State can be binary or multi-valued — phase space /. and state space /
e Configuration over a neighborhood system a)z{(xl,...,xs,...,xn):xS e,Se S}

e One of possible states of the system
e RF is a strictly positive prob. measure on the state space

P(X, =2, | X, = 2, 7 # 5)
e Markov Random Fields (MRFs) — RFs with spatial Markov property
PXs, =2, | X, =2,,r#5)=P(X; =2, | X, =2,,7 € Gy)

e G_describes the neighborhood system
e |Local characteristics depend only on knowledge of state of neighboring sites
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MRFs and Gibbs Fields

e Gibbs Field: special form of RF
e Characterized by the energy function U(w)
e Gibbs distribution:

e Tis the temperature parameter of the system — specifies min. selection sensitivity
e U(w) metric of system ‘energy’ — objective function to minimize

e Hammersley-Clifford theorem: Gibbs RF (distribution) with energy function
expressed in terms of neighbor potentials is equivalent to MRF and vice-versa
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MRFs and Potential Functions

e U(w) decomposed into a family of functions — potentials
U(w)= DV, (w)

e Typically employed nearest pairv(\:/Eiesf:e neighbor potentials
e Singleton
e Doubleton
e 3-cliques, etc.

e Mostly interested in singleton — doubleton potentials

e Applications: Gibbs measures where 3-clique and higher order cligue potentials
are zero
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Stochastic Relaxation: Sequential & Parallel Samplers

As # of sites increases, state space increases exponentially
e Direct sampling with Gibbs is intractable — partition function

e Probabilistic space reduction is feasible (e.g. Monte Carlo simulation) — stoch. relaxation

Generate a Markov chain on the configuration with GF as equilibrium distrib.

log annealing schedule (Simulated Annealing) — Gibbs sampling results in
configurations with globally min. energy

Local energy changes permitted — avoid traps in local minima
Implementations

e Sequential sampler

e Parallel sampler
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MREFs :: Applications

e MRFs applied already in various fields
e Statistical mechanics
e |[mage processing and video analysis

eExploit locality of pixel values to determine pixel values

e Applications in communications networks — focus in the following
e Network formation
e Malware propagation
e Power control

e Resource allocation & cross-layer design
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MRFs & Network Formation

e General problem: self-organization of distributed/autonomous networks
e UAV control — commercial and military drones
e \ehicles in highways
e Obstacle avoidance and personal assistance
e Critical challenges:
e Achieve global objectives — target locations over the mobility terrains
e Constrained optimization — obstacles and other mobility requirements
e Distributed coordination among groups of nodes
e Wireless signaling among nodes
e Fast response and adaptation = swarming/flocking inspired by birds, animals, etc.

e Specific problem: model swarming via MRFs

e Previous approaches (artificial potential functions) suffer local min. entrapment
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MRF Swarming Formulation

e Discrete possible locations for nodes-sites: 1 <i < N. 1< j < N,
e States: location coordinates =z = (i, ji )
e Neighborhood defined via mobility-sensing radius R.. < R;
e Evolution via seq. Gibbs sampling: pick annealing scheme and # of sweeps

e Determine set of next candidate locations:

L-,'; ; ﬂ..i‘-l_'l“: |?~_}" Y “ — “"3 —+ 'j' — _,.":Ic:lg = Rm :‘

e Foreach [ € L, evaluate:

D, [;1?3] = ii}_:,(ﬂ:,;. =1,z : e Nl Plz,=1) =

e Loop back until the # of sweeps

e |n parallel implementation, each node computes next move independently
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MRF Swarming Scenarios
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MRF Swarming Indicative Results

e Various examples of swarming via sequential MRF = - =) =
e Gathering -
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MRFs & Malware Spreading

e General problem: model malware propagation in complex networks

e Classic viruses/worms/etc.

e Emerging mobile malware

e Recurrent malware in the long-term (devices prone to receive malware all the time)
e Critical challenges:

e Model properly state transitions

e Diverse topologies with different features

e Generic modeling framework
e Specific problem: model SIS malware type via MRFs

e Previous approaches focus on more specific threats than generic malware
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MRF Malware Spreading Formulation

e Demonstration for a chain network with neighborhood N ={k-1,k+1}
e Binary phase space: infected — susceptible: A ={-1,1}
e Neighbor potentials and energy function:

Oy (x) = Oy (wp, {aw K € N} = O (wp, {zn—1 Trgr }) U(r)=—J Z ThThyl

1 o : k=0
Dy, (J'L-) = Pp(orp =1, 2p_1, Thy1) = Tho1 + Thy
e Probabilities for configuration values:
I 1I.-:T.E' 3
E—I—é‘-,};ij‘—' configuration x={x1,xz,...,Xn}
]FI l:.\‘t'.-il'-' — IIIIJ:I — '1',l;lfmfjf| Xp=-1 ; x=1 X:=1 Xea=1 Xe=1 Xpaq=-1 Xn1=1 Xu=-1 Exm-i:‘-]
¢eLy, s s
. . s=0 ! s=1 s=2 s=k-1 s=k s=k+1 s=n-1  s=n { s=n+1
1 1 phase space N\={-1,1} N={k-1,k+1}
Pl = 1) = : : - = : —
(Bgizy =T (zL)) i ) S
|+ e ey 1+e T
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MRF Malware Propagation Solution Features

e 10000 sweeps, 50 averaging scenarios
e Ergodic distributions of system states

e State: # of infected nodes
e As the chain increases distributions have

longer tails — tougher to infect most nodes

e Expected # of infected nodes
e Larger networks, more expected infected (not %-wise)
e Phase transitions emerging w.r.t. n and T/J
e For large n the drop is more significant

e For T/J>0.1 propagation depends mainly on size
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MRF Power Control in Wireless Networks

e General problem: optimal control of power
e Control energy consumption
e Mitigate co-channel interference
e Maintain connectivity and network robustness
e Critical challenges for power control:
e Non-convex nature: optimal power control very tough via utility maximization
e Obtain globally optimal solution in a distributed & asynchronous manner
e Strict assumptions on employed utility functions
e Specific problem: distributed optimal control via utility functions
e Previous approaches (e.g. MAPEL) are centralized — significant computational overhead
e Mostly converge to suboptimal solutions

e GLAD — optimal solution for general utility functions
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Original Power Control Formulation

e MREF sites: set of transmission links M = {1,--- M}

e phase space: set of available power levels p = (p;,Vi € M)
Pmin — [P;nin"‘vﬂi P 4\‘/” pPmax [;P;ﬁa,x. Vi € .,\/”

e System utility function as a received SINR function:

7 . M [7.( . (p) Giips
"II ) II - . } ¥ II i I| ﬂ:"." -:I - 3 —
Sy (p)) 5—51; ilvilp)) I 5 Giipi +ni

e Find power allocation max. overall system utility

UM : maximize U(~(p))
P

subject to P;“in <p; < PTViie M.

e U(.) non-negative and continuous — no other restrictive assumptions

NETMODE (Network Management & Optimal Design Lab)



MRF Power Control Formulation
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MRF Power Control Solution Features

® D|SC rEte-G LAD Algorithm 1 The Discrete-GLAD Algorithm

The implementation at each transmitter node

e Continuous version as well T,

I: Initialization: pick a sequence of tme epochs
1y 02 1 - ) . L
. . L £t -« b In continuous time.
. from arb | f R w
Sta rtl ng ro ar Itra ry In Itla cont. 2. Choose some feasible power p;(t,”") € ’F’_:D. Let £ =1.
. 3: repeat
D—G LAD —> IVIa rkOV Cha N 4. Transmit the data packet with the power level pgﬁjtg’” ).
5. Keep sensing the control packets broadcasted by re-
nver in t t tl nar ceivers, and then update the information of ~;’s and
converging to stationary
PR . k= k4+1. |
U, U‘C U (Y(p)) = 0; T: Update the feasible power p;[tf_l‘"] c ’P;D according to
B} the probability distribution given in (5).
Qa(p) = < =P\ TvET 8: until Link ¢ decides to leave the network
o . otherwise, The implementation at each receiver node F;:
K u:-;p(t_.[ﬁr_[;f”) I: repeat
\ pIeP DU (v(p"))#0 2. Keep measuring its received SINR and received power,
e The convergence rate is linear in total variational and broadcast them in a control packet when a change

in the SINR or power 1s sensed.
- until Link 7 leaves the network

L]

distance

]
-
[t

195 — Qslar < 5] A2s

PP = {plp: € PP Vi)
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MRF Power Control Convergence and Complexity
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e Obtained total throughput with fading channels (10 links)
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MRFs and Cross-layer Design in Complex Networks

e General problem: model resource allocation in complex networks
e Various emerging tradeoffs with protocol layer inter-dependencies
e Resources are scarce and highly desired by all users
e Complexity should be as low as possible
e Unifying framework for complex topologies

e Critical challenges:

e Keep signaling low — local only information exchanges
e Distributed computation/operation (or at least semi-distributed)
e Ensure QoS guarantees
e Specific problem: PHY-MAC-NET resource assignment in CRNs

e Previous approaches depend on heavy optimization

e Mostly centralized with significant overhead
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MRFs and Cross-layer Design in CRNs

e Cognitive radio network: Primary (centralized) — secondary users (distributed)

e Determine resources of SU given activity of PU: channels — access — path augmentation

e Main concept: decompose decision from representation

e Design them in a modular fashion — case of MRFs here

Transmission domain of node 5: Ty flow paths 4= Routing MET layer
+
MRF neighborhood of node s : G Interférence domain of node 5: N, interfaces
System
] Gibbs Parametgrs f— .
/ 0 Eamplingi'——MRF_ sl MAC layer
¢ P potential AcCcCess
a channel
o access
e imred Radio PHY layer
char?nelf. === Resource (CR
Allocation enabled)
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CRN MRF Cross-layer Design Formulation — PHY

e State of nodes: list of assigned channels (u( «(2 ... -u.fi-'”?')T u™ € @ = {0,1}
* Neighborhood system in range R,

e Potential function — pairwise nearest neighbors

e.g.
let M = 5 and
Z 1{ } () Z I’IP{(f:;}(lESalrj} PU, operates at channels 1, 2 and 3
seS { ,JYE(Sx5),5€G: /
& = (00011)T
r a —5 . —
M- (1 —sig(||lus]lh)), if |us]ls > 1 and
._.l' h s ‘ - f— ,{ ! . 'q p— T
} {s} ( Ls) Us = O Us 1 CRN ENVIRONMENT szemTTTTY
| 91 > 0, otherwise. F{”ﬁ ks
Ao -0, - T, if j € T, and o
1’{53}[;1'-5’1'.5] = 4 A2 Y e, (WenZe)+Aa-1is-&; Y - el :
|§31\{T3}| ] 1 .} E gS \ { 5}
do > 0, otherwise.
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CRN MRF Cross-layer Design Formulation — MAC/NET

e MAC scheduling: determined by doubleton potential
e |If channels suffice — orthogonal assignment
e If channels insufficient - CSMA/CA scheme

e NET path augmentation: enhance available paths with additional channels

e Cross-layer metric p(s)

‘ A
e Routing protocol agnostic A (1 14 1.eCla—d—eleysten) B)’

. . Vi) (z,) = 4
e Pushes information from NET-to-PHY {s} if ||us|l1 >

01 > 0, otherwise.

e Higher-quality routing paths
e Semi-parallel implementation

e Sites update state independently w.p. T

e Reduces mean sweep time (nt)
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MRF Cross-layer Indicative Results — Convergence

e Random topology

e Effect of T on
convergence
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MRF Cross-layer Indicative Results — Resource Allocation |

e Av. # of SU using CSMA/CA

Bl 0.2 Parallel Approach

e Spectrum utilization in space domain
e Collision avoidance among SUs
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MRF Cross-layer Indicative Results — Resource Allocation Il

e Comparison of pure CSMA/CA with
sequential and semi-parallel approaches
e Grid scenario with 2 multiplexed flows

e Channel assignment to specific nodes

Mo. of SUs competing
each node for medium access
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MREFs in the Future: Challenges

e Dynamic MRFs
e MIRF models for scenarios with site churn: is it possible somehow?
e Convergence?
e Networks with mobility
e Currently impossible to achieve convergence
e Slowly-varying mobility viable
e Sequential — semi-parallel — parallel implementations

e Overhead vs. accuracy and convergence guarantees

e |dentify objective-‘optimal’ annealing schemes
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Potential Applications of MRFs

e |Information diffusion and social network analysis

e Combined with resource allocation in centralized types of networks, e.g. spectrum
database CRNs

e Reputation and trust

e Model and manage confidences and their shaping factors
e \oting and opinion formation: voting prediction systems

e Simulate the strength/acceptance of tendencies in forthcoming public votes
e Distributed computation

e Approximations of various forms of computation in distributed agents

e Fast decision-making under risk-prone environments

e Applications in portfolio management, etc.
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e Complex networks and Network Science

e A multi-disciplinary unified theory for studying/designing/engineering networks

e Markov Random Fields (MRFs)

e Statistical mechanics approach allowing stochastic optimization and much more...

e Various applications in communications networks

e Swarming :: malware propagation :: power control :: cross-layer design
e Low operational/implementation complexity
e Very close to optimal solutions — often global optimal solutions
e Sequential and parallel implementations

e Depending on applications and scenarios

e A lot of potentials for future applications
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Open Discussion

Thank you for your attention!

??? Questions ???
&
... comments ...
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